Information on Result #714624

Linear OA(860, 95, F8, 31) (dual of [95, 35, 32]-code), using construction XX applied to C1 = C([54,18]), C2 = C([1,21]), C3 = C1 + C2 = C([1,18]), and C∩ = C1 ∩ C2 = C([54,21]) based on
  1. linear OA(840, 63, F8, 28) (dual of [63, 23, 29]-code), using the primitive BCH-code C(I) with length 63 = 82−1, defining interval I = {−9,−8,…,18}, and designed minimum distance d ≥ |I|+1 = 29 [i]
  2. linear OA(834, 63, F8, 21) (dual of [63, 29, 22]-code), using the primitive narrow-sense BCH-code C(I) with length 63 = 82−1, defining interval I = [1,21], and designed minimum distance d ≥ |I|+1 = 22 [i]
  3. linear OA(846, 63, F8, 31) (dual of [63, 17, 32]-code), using the primitive BCH-code C(I) with length 63 = 82−1, defining interval I = {−9,−8,…,21}, and designed minimum distance d ≥ |I|+1 = 32 [i]
  4. linear OA(828, 63, F8, 18) (dual of [63, 35, 19]-code), using the primitive narrow-sense BCH-code C(I) with length 63 = 82−1, defining interval I = [1,18], and designed minimum distance d ≥ |I|+1 = 19 [i]
  5. linear OA(812, 24, F8, 9) (dual of [24, 12, 10]-code), using
  6. linear OA(82, 8, F8, 2) (dual of [8, 6, 3]-code or 8-arc in PG(1,8)), using

Mode: Constructive and linear.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Compare with Markus Grassl’s online database of code parameters.

Other Results with Identical Parameters

None.

Depending Results

None.