Information on Result #714631

Linear OA(840, 70, F8, 24) (dual of [70, 30, 25]-code), using construction XX applied to C1 = C([61,20]), C2 = C([0,21]), C3 = C1 + C2 = C([0,20]), and C∩ = C1 ∩ C2 = C([61,21]) based on
  1. linear OA(837, 63, F8, 23) (dual of [63, 26, 24]-code), using the primitive BCH-code C(I) with length 63 = 82−1, defining interval I = {−2,−1,…,20}, and designed minimum distance d ≥ |I|+1 = 24 [i]
  2. linear OA(835, 63, F8, 22) (dual of [63, 28, 23]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 63 = 82−1, defining interval I = [0,21], and designed minimum distance d ≥ |I|+1 = 23 [i]
  3. linear OA(839, 63, F8, 24) (dual of [63, 24, 25]-code), using the primitive BCH-code C(I) with length 63 = 82−1, defining interval I = {−2,−1,…,21}, and designed minimum distance d ≥ |I|+1 = 25 [i]
  4. linear OA(833, 63, F8, 21) (dual of [63, 30, 22]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 63 = 82−1, defining interval I = [0,20], and designed minimum distance d ≥ |I|+1 = 22 [i]
  5. linear OA(81, 5, F8, 1) (dual of [5, 4, 2]-code), using
  6. linear OA(80, 2, F8, 0) (dual of [2, 2, 1]-code), using

Mode: Constructive and linear.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Compare with Markus Grassl’s online database of code parameters.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1Linear OOA(840, 35, F8, 2, 24) (dual of [(35, 2), 30, 25]-NRT-code) [i]OOA Folding