Information on Result #714641

Linear OA(854, 84, F8, 30) (dual of [84, 30, 31]-code), using construction XX applied to C1 = C([10,36]), C2 = C([7,28]), C3 = C1 + C2 = C([10,28]), and C∩ = C1 ∩ C2 = C([7,36]) based on
  1. linear OA(839, 63, F8, 27) (dual of [63, 24, 28]-code), using the primitive BCH-code C(I) with length 63 = 82−1, defining interval I = {10,11,…,36}, and designed minimum distance d ≥ |I|+1 = 28 [i]
  2. linear OA(835, 63, F8, 22) (dual of [63, 28, 23]-code), using the primitive BCH-code C(I) with length 63 = 82−1, defining interval I = {7,8,…,28}, and designed minimum distance d ≥ |I|+1 = 23 [i]
  3. linear OA(844, 63, F8, 30) (dual of [63, 19, 31]-code), using the primitive BCH-code C(I) with length 63 = 82−1, defining interval I = {7,8,…,36}, and designed minimum distance d ≥ |I|+1 = 31 [i]
  4. linear OA(830, 63, F8, 19) (dual of [63, 33, 20]-code), using the primitive BCH-code C(I) with length 63 = 82−1, defining interval I = {10,11,…,28}, and designed minimum distance d ≥ |I|+1 = 20 [i]
  5. linear OA(88, 14, F8, 7) (dual of [14, 6, 8]-code), using
  6. linear OA(82, 7, F8, 2) (dual of [7, 5, 3]-code or 7-arc in PG(1,8)), using

Mode: Constructive and linear.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Compare with Markus Grassl’s online database of code parameters.

Other Results with Identical Parameters

None.

Depending Results

None.