Information on Result #714649

Linear OA(853, 82, F8, 30) (dual of [82, 29, 31]-code), using construction XX applied to C1 = C([9,36]), C2 = C([7,28]), C3 = C1 + C2 = C([9,28]), and C∩ = C1 ∩ C2 = C([7,36]) based on
  1. linear OA(840, 63, F8, 28) (dual of [63, 23, 29]-code), using the primitive BCH-code C(I) with length 63 = 82−1, defining interval I = {9,10,…,36}, and designed minimum distance d ≥ |I|+1 = 29 [i]
  2. linear OA(835, 63, F8, 22) (dual of [63, 28, 23]-code), using the primitive BCH-code C(I) with length 63 = 82−1, defining interval I = {7,8,…,28}, and designed minimum distance d ≥ |I|+1 = 23 [i]
  3. linear OA(844, 63, F8, 30) (dual of [63, 19, 31]-code), using the primitive BCH-code C(I) with length 63 = 82−1, defining interval I = {7,8,…,36}, and designed minimum distance d ≥ |I|+1 = 31 [i]
  4. linear OA(831, 63, F8, 20) (dual of [63, 32, 21]-code), using the primitive BCH-code C(I) with length 63 = 82−1, defining interval I = {9,10,…,28}, and designed minimum distance d ≥ |I|+1 = 21 [i]
  5. linear OA(88, 14, F8, 7) (dual of [14, 6, 8]-code), using
  6. linear OA(81, 5, F8, 1) (dual of [5, 4, 2]-code), using

Mode: Constructive and linear.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Compare with Markus Grassl’s online database of code parameters.

Other Results with Identical Parameters

None.

Depending Results

None.