Information on Result #714657

Linear OA(852, 81, F8, 30) (dual of [81, 29, 31]-code), using construction XX applied to C1 = C([62,26]), C2 = C([6,28]), C3 = C1 + C2 = C([6,26]), and C∩ = C1 ∩ C2 = C([62,28]) based on
  1. linear OA(841, 63, F8, 28) (dual of [63, 22, 29]-code), using the primitive BCH-code C(I) with length 63 = 82−1, defining interval I = {−1,0,…,26}, and designed minimum distance d ≥ |I|+1 = 29 [i]
  2. linear OA(837, 63, F8, 23) (dual of [63, 26, 24]-code), using the primitive BCH-code C(I) with length 63 = 82−1, defining interval I = {6,7,…,28}, and designed minimum distance d ≥ |I|+1 = 24 [i]
  3. linear OA(844, 63, F8, 30) (dual of [63, 19, 31]-code), using the primitive BCH-code C(I) with length 63 = 82−1, defining interval I = {−1,0,…,28}, and designed minimum distance d ≥ |I|+1 = 31 [i]
  4. linear OA(834, 63, F8, 21) (dual of [63, 29, 22]-code), using the primitive BCH-code C(I) with length 63 = 82−1, defining interval I = {6,7,…,26}, and designed minimum distance d ≥ |I|+1 = 22 [i]
  5. linear OA(87, 14, F8, 6) (dual of [14, 7, 7]-code), using
  6. linear OA(81, 4, F8, 1) (dual of [4, 3, 2]-code), using

Mode: Constructive and linear.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Compare with Markus Grassl’s online database of code parameters.

Other Results with Identical Parameters

None.

Depending Results

None.