Information on Result #714666

Linear OA(853, 84, F8, 30) (dual of [84, 31, 31]-code), using construction XX applied to C1 = C([0,26]), C2 = C([7,29]), C3 = C1 + C2 = C([7,26]), and C∩ = C1 ∩ C2 = C([0,29]) based on
  1. linear OA(839, 63, F8, 27) (dual of [63, 24, 28]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 63 = 82−1, defining interval I = [0,26], and designed minimum distance d ≥ |I|+1 = 28 [i]
  2. linear OA(837, 63, F8, 23) (dual of [63, 26, 24]-code), using the primitive BCH-code C(I) with length 63 = 82−1, defining interval I = {7,8,…,29}, and designed minimum distance d ≥ |I|+1 = 24 [i]
  3. linear OA(844, 63, F8, 30) (dual of [63, 19, 31]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 63 = 82−1, defining interval I = [0,29], and designed minimum distance d ≥ |I|+1 = 31 [i]
  4. linear OA(832, 63, F8, 20) (dual of [63, 31, 21]-code), using the primitive BCH-code C(I) with length 63 = 82−1, defining interval I = {7,8,…,26}, and designed minimum distance d ≥ |I|+1 = 21 [i]
  5. linear OA(87, 14, F8, 6) (dual of [14, 7, 7]-code), using
  6. linear OA(82, 7, F8, 2) (dual of [7, 5, 3]-code or 7-arc in PG(1,8)), using

Mode: Constructive and linear.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Compare with Markus Grassl’s online database of code parameters.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1Linear OOA(853, 42, F8, 2, 30) (dual of [(42, 2), 31, 31]-NRT-code) [i]OOA Folding