Information on Result #714676

Linear OA(855, 85, F8, 31) (dual of [85, 30, 32]-code), using construction XX applied to C1 = C([9,36]), C2 = C([6,29]), C3 = C1 + C2 = C([9,29]), and C∩ = C1 ∩ C2 = C([6,36]) based on
  1. linear OA(840, 63, F8, 28) (dual of [63, 23, 29]-code), using the primitive BCH-code C(I) with length 63 = 82−1, defining interval I = {9,10,…,36}, and designed minimum distance d ≥ |I|+1 = 29 [i]
  2. linear OA(839, 63, F8, 24) (dual of [63, 24, 25]-code), using the primitive BCH-code C(I) with length 63 = 82−1, defining interval I = {6,7,…,29}, and designed minimum distance d ≥ |I|+1 = 25 [i]
  3. linear OA(846, 63, F8, 31) (dual of [63, 17, 32]-code), using the primitive BCH-code C(I) with length 63 = 82−1, defining interval I = {6,7,…,36}, and designed minimum distance d ≥ |I|+1 = 32 [i]
  4. linear OA(833, 63, F8, 21) (dual of [63, 30, 22]-code), using the primitive BCH-code C(I) with length 63 = 82−1, defining interval I = {9,10,…,29}, and designed minimum distance d ≥ |I|+1 = 22 [i]
  5. linear OA(87, 14, F8, 6) (dual of [14, 7, 7]-code), using
  6. linear OA(82, 8, F8, 2) (dual of [8, 6, 3]-code or 8-arc in PG(1,8)), using

Mode: Constructive and linear.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Compare with Markus Grassl’s online database of code parameters.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1Linear OOA(855, 42, F8, 2, 31) (dual of [(42, 2), 29, 32]-NRT-code) [i]OOA Folding