Information on Result #714679

Linear OA(842, 63, F8, 29) (dual of [63, 21, 30]-code), using the primitive BCH-code C(I) with length 63 = 82−1, defining interval I = {8,9,…,36}, and designed minimum distance d ≥ |I|+1 = 30

Mode: Constructive and linear.

This result is hidden, because other results with identical parameters exist.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Compare with Markus Grassl’s online database of code parameters.

Other Results with Identical Parameters

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1Linear OA(8105, 126, F8, 59) (dual of [126, 21, 60]-code) [i]Repeating Each Code Word
2Linear OA(8104, 124, F8, 59) (dual of [124, 20, 60]-code) [i]
3Linear OA(8103, 122, F8, 59) (dual of [122, 19, 60]-code) [i]
4Linear OA(8102, 120, F8, 59) (dual of [120, 18, 60]-code) [i]
5Linear OA(8101, 118, F8, 59) (dual of [118, 17, 60]-code) [i]
6Linear OA(854, 82, F8, 31) (dual of [82, 28, 32]-code) [i]Construction XX with Cyclic Codes
7Linear OA(868, 100, F8, 36) (dual of [100, 32, 37]-code) [i]
8Linear OA(867, 98, F8, 36) (dual of [98, 31, 37]-code) [i]
9Linear OA(863, 90, F8, 36) (dual of [90, 27, 37]-code) [i]
10Linear OA(871, 90, F8, 45) (dual of [90, 19, 46]-code) [i]
11Linear OA(874, 93, F8, 46) (dual of [93, 19, 47]-code) [i]
12Linear OA(878, 97, F8, 47) (dual of [97, 19, 48]-code) [i]