Information on Result #714681

Linear OA(849, 75, F8, 30) (dual of [75, 26, 31]-code), using construction XX applied to C1 = C([0,27]), C2 = C([5,29]), C3 = C1 + C2 = C([5,27]), and C∩ = C1 ∩ C2 = C([0,29]) based on
  1. linear OA(840, 63, F8, 28) (dual of [63, 23, 29]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 63 = 82−1, defining interval I = [0,27], and designed minimum distance d ≥ |I|+1 = 29 [i]
  2. linear OA(841, 63, F8, 25) (dual of [63, 22, 26]-code), using the primitive BCH-code C(I) with length 63 = 82−1, defining interval I = {5,6,…,29}, and designed minimum distance d ≥ |I|+1 = 26 [i]
  3. linear OA(844, 63, F8, 30) (dual of [63, 19, 31]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 63 = 82−1, defining interval I = [0,29], and designed minimum distance d ≥ |I|+1 = 31 [i]
  4. linear OA(837, 63, F8, 23) (dual of [63, 26, 24]-code), using the primitive BCH-code C(I) with length 63 = 82−1, defining interval I = {5,6,…,27}, and designed minimum distance d ≥ |I|+1 = 24 [i]
  5. linear OA(84, 7, F8, 4) (dual of [7, 3, 5]-code or 7-arc in PG(3,8)), using
  6. linear OA(81, 5, F8, 1) (dual of [5, 4, 2]-code), using

Mode: Constructive and linear.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Compare with Markus Grassl’s online database of code parameters.

Other Results with Identical Parameters

None.

Depending Results

None.