Information on Result #714702

Linear OA(862, 93, F8, 33) (dual of [93, 31, 34]-code), using construction XX applied to C1 = C([8,35]), C2 = C([1,26]), C3 = C1 + C2 = C([8,26]), and C∩ = C1 ∩ C2 = C([1,35]) based on
  1. linear OA(841, 63, F8, 28) (dual of [63, 22, 29]-code), using the primitive BCH-code C(I) with length 63 = 82−1, defining interval I = {8,9,…,35}, and designed minimum distance d ≥ |I|+1 = 29 [i]
  2. linear OA(838, 63, F8, 26) (dual of [63, 25, 27]-code), using the primitive narrow-sense BCH-code C(I) with length 63 = 82−1, defining interval I = [1,26], and designed minimum distance d ≥ |I|+1 = 27 [i]
  3. linear OA(847, 63, F8, 35) (dual of [63, 16, 36]-code), using the primitive narrow-sense BCH-code C(I) with length 63 = 82−1, defining interval I = [1,35], and designed minimum distance d ≥ |I|+1 = 36 [i]
  4. linear OA(830, 63, F8, 19) (dual of [63, 33, 20]-code), using the primitive BCH-code C(I) with length 63 = 82−1, defining interval I = {8,9,…,26}, and designed minimum distance d ≥ |I|+1 = 20 [i]
  5. linear OA(88, 17, F8, 6) (dual of [17, 9, 7]-code), using
  6. linear OA(87, 13, F8, 6) (dual of [13, 6, 7]-code), using

Mode: Constructive and linear.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Compare with Markus Grassl’s online database of code parameters.

Other Results with Identical Parameters

None.

Depending Results

None.