Information on Result #714715

Linear OA(865, 94, F8, 36) (dual of [94, 29, 37]-code), using construction XX applied to C1 = C([7,36]), C2 = C([1,26]), C3 = C1 + C2 = C([7,26]), and C∩ = C1 ∩ C2 = C([1,36]) based on
  1. linear OA(844, 63, F8, 30) (dual of [63, 19, 31]-code), using the primitive BCH-code C(I) with length 63 = 82−1, defining interval I = {7,8,…,36}, and designed minimum distance d ≥ |I|+1 = 31 [i]
  2. linear OA(838, 63, F8, 26) (dual of [63, 25, 27]-code), using the primitive narrow-sense BCH-code C(I) with length 63 = 82−1, defining interval I = [1,26], and designed minimum distance d ≥ |I|+1 = 27 [i]
  3. linear OA(848, 63, F8, 36) (dual of [63, 15, 37]-code), using the primitive narrow-sense BCH-code C(I) with length 63 = 82−1, defining interval I = [1,36], and designed minimum distance d ≥ |I|+1 = 37 [i]
  4. linear OA(832, 63, F8, 20) (dual of [63, 31, 21]-code), using the primitive BCH-code C(I) with length 63 = 82−1, defining interval I = {7,8,…,26}, and designed minimum distance d ≥ |I|+1 = 21 [i]
  5. linear OA(812, 22, F8, 9) (dual of [22, 10, 10]-code), using
  6. linear OA(85, 9, F8, 5) (dual of [9, 4, 6]-code or 9-arc in PG(4,8)), using

Mode: Constructive and linear.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Compare with Markus Grassl’s online database of code parameters.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1Linear OOA(865, 47, F8, 2, 36) (dual of [(47, 2), 29, 37]-NRT-code) [i]OOA Folding