Information on Result #714724

Linear OA(863, 93, F8, 35) (dual of [93, 30, 36]-code), using construction XX applied to C1 = C([55,19]), C2 = C([0,26]), C3 = C1 + C2 = C([0,19]), and C∩ = C1 ∩ C2 = C([55,26]) based on
  1. linear OA(841, 63, F8, 28) (dual of [63, 22, 29]-code), using the primitive BCH-code C(I) with length 63 = 82−1, defining interval I = {−8,−7,…,19}, and designed minimum distance d ≥ |I|+1 = 29 [i]
  2. linear OA(839, 63, F8, 27) (dual of [63, 24, 28]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 63 = 82−1, defining interval I = [0,26], and designed minimum distance d ≥ |I|+1 = 28 [i]
  3. linear OA(847, 63, F8, 35) (dual of [63, 16, 36]-code), using the primitive BCH-code C(I) with length 63 = 82−1, defining interval I = {−8,−7,…,26}, and designed minimum distance d ≥ |I|+1 = 36 [i]
  4. linear OA(831, 63, F8, 20) (dual of [63, 32, 21]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 63 = 82−1, defining interval I = [0,19], and designed minimum distance d ≥ |I|+1 = 21 [i]
  5. linear OA(89, 17, F8, 7) (dual of [17, 8, 8]-code), using
  6. linear OA(87, 13, F8, 6) (dual of [13, 6, 7]-code), using

Mode: Constructive and linear.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Compare with Markus Grassl’s online database of code parameters.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1Linear OA(862, 92, F8, 34) (dual of [92, 30, 35]-code) [i]Truncation