Information on Result #714759

Linear OA(862, 85, F8, 38) (dual of [85, 23, 39]-code), using construction XX applied to C1 = C([54,27]), C2 = C([0,28]), C3 = C1 + C2 = C([0,27]), and C∩ = C1 ∩ C2 = C([54,28]) based on
  1. linear OA(849, 63, F8, 37) (dual of [63, 14, 38]-code), using the primitive BCH-code C(I) with length 63 = 82−1, defining interval I = {−9,−8,…,27}, and designed minimum distance d ≥ |I|+1 = 38 [i]
  2. linear OA(842, 63, F8, 29) (dual of [63, 21, 30]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 63 = 82−1, defining interval I = [0,28], and designed minimum distance d ≥ |I|+1 = 30 [i]
  3. linear OA(851, 63, F8, 38) (dual of [63, 12, 39]-code), using the primitive BCH-code C(I) with length 63 = 82−1, defining interval I = {−9,−8,…,28}, and designed minimum distance d ≥ |I|+1 = 39 [i]
  4. linear OA(840, 63, F8, 28) (dual of [63, 23, 29]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 63 = 82−1, defining interval I = [0,27], and designed minimum distance d ≥ |I|+1 = 29 [i]
  5. linear OA(811, 20, F8, 8) (dual of [20, 9, 9]-code), using
  6. linear OA(80, 2, F8, 0) (dual of [2, 2, 1]-code), using

Mode: Constructive and linear.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Compare with Markus Grassl’s online database of code parameters.

Other Results with Identical Parameters

None.

Depending Results

None.