Information on Result #714764

Linear OA(867, 92, F8, 39) (dual of [92, 25, 40]-code), using construction XX applied to C1 = C([54,26]), C2 = C([1,29]), C3 = C1 + C2 = C([1,26]), and C∩ = C1 ∩ C2 = C([54,29]) based on
  1. linear OA(848, 63, F8, 36) (dual of [63, 15, 37]-code), using the primitive BCH-code C(I) with length 63 = 82−1, defining interval I = {−9,−8,…,26}, and designed minimum distance d ≥ |I|+1 = 37 [i]
  2. linear OA(843, 63, F8, 29) (dual of [63, 20, 30]-code), using the primitive narrow-sense BCH-code C(I) with length 63 = 82−1, defining interval I = [1,29], and designed minimum distance d ≥ |I|+1 = 30 [i]
  3. linear OA(853, 63, F8, 39) (dual of [63, 10, 40]-code), using the primitive BCH-code C(I) with length 63 = 82−1, defining interval I = {−9,−8,…,29}, and designed minimum distance d ≥ |I|+1 = 40 [i]
  4. linear OA(838, 63, F8, 26) (dual of [63, 25, 27]-code), using the primitive narrow-sense BCH-code C(I) with length 63 = 82−1, defining interval I = [1,26], and designed minimum distance d ≥ |I|+1 = 27 [i]
  5. linear OA(812, 22, F8, 9) (dual of [22, 10, 10]-code), using
  6. linear OA(82, 7, F8, 2) (dual of [7, 5, 3]-code or 7-arc in PG(1,8)), using

Mode: Constructive and linear.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Compare with Markus Grassl’s online database of code parameters.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1Linear OA(869, 94, F8, 39) (dual of [94, 25, 40]-code) [i]Code Embedding in Larger Space
2Linear OA(866, 91, F8, 38) (dual of [91, 25, 39]-code) [i]Truncation
3Linear OOA(867, 46, F8, 2, 39) (dual of [(46, 2), 25, 40]-NRT-code) [i]OOA Folding