Information on Result #714767

Linear OA(871, 96, F8, 40) (dual of [96, 25, 41]-code), using construction XX applied to C1 = C([53,26]), C2 = C([1,29]), C3 = C1 + C2 = C([1,26]), and C∩ = C1 ∩ C2 = C([53,29]) based on
  1. linear OA(850, 63, F8, 37) (dual of [63, 13, 38]-code), using the primitive BCH-code C(I) with length 63 = 82−1, defining interval I = {−10,−9,…,26}, and designed minimum distance d ≥ |I|+1 = 38 [i]
  2. linear OA(843, 63, F8, 29) (dual of [63, 20, 30]-code), using the primitive narrow-sense BCH-code C(I) with length 63 = 82−1, defining interval I = [1,29], and designed minimum distance d ≥ |I|+1 = 30 [i]
  3. linear OA(855, 63, F8, 40) (dual of [63, 8, 41]-code), using the primitive BCH-code C(I) with length 63 = 82−1, defining interval I = {−10,−9,…,29}, and designed minimum distance d ≥ |I|+1 = 41 [i]
  4. linear OA(838, 63, F8, 26) (dual of [63, 25, 27]-code), using the primitive narrow-sense BCH-code C(I) with length 63 = 82−1, defining interval I = [1,26], and designed minimum distance d ≥ |I|+1 = 27 [i]
  5. linear OA(814, 26, F8, 10) (dual of [26, 12, 11]-code), using
  6. linear OA(82, 7, F8, 2) (dual of [7, 5, 3]-code or 7-arc in PG(1,8)), using

Mode: Constructive and linear.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Compare with Markus Grassl’s online database of code parameters.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1Linear OOA(871, 48, F8, 2, 40) (dual of [(48, 2), 25, 41]-NRT-code) [i]OOA Folding