Information on Result #714774

Linear OA(864, 86, F8, 39) (dual of [86, 22, 40]-code), using construction XX applied to C1 = C([10,45]), C2 = C([7,37]), C3 = C1 + C2 = C([10,37]), and C∩ = C1 ∩ C2 = C([7,45]) based on
  1. linear OA(848, 63, F8, 36) (dual of [63, 15, 37]-code), using the primitive BCH-code C(I) with length 63 = 82−1, defining interval I = {10,11,…,45}, and designed minimum distance d ≥ |I|+1 = 37 [i]
  2. linear OA(846, 63, F8, 31) (dual of [63, 17, 32]-code), using the primitive BCH-code C(I) with length 63 = 82−1, defining interval I = {7,8,…,37}, and designed minimum distance d ≥ |I|+1 = 32 [i]
  3. linear OA(853, 63, F8, 39) (dual of [63, 10, 40]-code), using the primitive BCH-code C(I) with length 63 = 82−1, defining interval I = {7,8,…,45}, and designed minimum distance d ≥ |I|+1 = 40 [i]
  4. linear OA(841, 63, F8, 28) (dual of [63, 22, 29]-code), using the primitive BCH-code C(I) with length 63 = 82−1, defining interval I = {10,11,…,37}, and designed minimum distance d ≥ |I|+1 = 29 [i]
  5. linear OA(89, 16, F8, 7) (dual of [16, 7, 8]-code), using
  6. linear OA(82, 7, F8, 2) (dual of [7, 5, 3]-code or 7-arc in PG(1,8)), using

Mode: Constructive and linear.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Compare with Markus Grassl’s online database of code parameters.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1Linear OOA(864, 43, F8, 2, 39) (dual of [(43, 2), 22, 40]-NRT-code) [i]OOA Folding