Information on Result #714807

Linear OA(870, 91, F8, 44) (dual of [91, 21, 45]-code), using construction XX applied to C1 = C([55,27]), C2 = C([0,35]), C3 = C1 + C2 = C([0,27]), and C∩ = C1 ∩ C2 = C([55,35]) based on
  1. linear OA(848, 63, F8, 36) (dual of [63, 15, 37]-code), using the primitive BCH-code C(I) with length 63 = 82−1, defining interval I = {−8,−7,…,27}, and designed minimum distance d ≥ |I|+1 = 37 [i]
  2. linear OA(848, 63, F8, 36) (dual of [63, 15, 37]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 63 = 82−1, defining interval I = [0,35], and designed minimum distance d ≥ |I|+1 = 37 [i]
  3. linear OA(854, 63, F8, 44) (dual of [63, 9, 45]-code), using the primitive BCH-code C(I) with length 63 = 82−1, defining interval I = {−8,−7,…,35}, and designed minimum distance d ≥ |I|+1 = 45 [i]
  4. linear OA(840, 63, F8, 28) (dual of [63, 23, 29]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 63 = 82−1, defining interval I = [0,27], and designed minimum distance d ≥ |I|+1 = 29 [i]
  5. linear OA(88, 14, F8, 7) (dual of [14, 6, 8]-code), using
  6. linear OA(88, 14, F8, 7) (dual of [14, 6, 8]-code) (see above)

Mode: Constructive and linear.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Compare with Markus Grassl’s online database of code parameters.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1Linear OA(871, 92, F8, 44) (dual of [92, 21, 45]-code) [i]Code Embedding in Larger Space
2Linear OA(869, 90, F8, 43) (dual of [90, 21, 44]-code) [i]Truncation
3Linear OA(868, 89, F8, 42) (dual of [89, 21, 43]-code) [i]
4Linear OA(866, 87, F8, 40) (dual of [87, 21, 41]-code) [i]
5Linear OOA(870, 45, F8, 2, 44) (dual of [(45, 2), 20, 45]-NRT-code) [i]OOA Folding