Information on Result #714815

Linear OA(872, 91, F8, 45) (dual of [91, 19, 46]-code), using construction XX applied to C1 = C([54,27]), C2 = C([0,35]), C3 = C1 + C2 = C([0,27]), and C∩ = C1 ∩ C2 = C([54,35]) based on
  1. linear OA(849, 63, F8, 37) (dual of [63, 14, 38]-code), using the primitive BCH-code C(I) with length 63 = 82−1, defining interval I = {−9,−8,…,27}, and designed minimum distance d ≥ |I|+1 = 38 [i]
  2. linear OA(848, 63, F8, 36) (dual of [63, 15, 37]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 63 = 82−1, defining interval I = [0,35], and designed minimum distance d ≥ |I|+1 = 37 [i]
  3. linear OA(855, 63, F8, 45) (dual of [63, 8, 46]-code), using the primitive BCH-code C(I) with length 63 = 82−1, defining interval I = {−9,−8,…,35}, and designed minimum distance d ≥ |I|+1 = 46 [i]
  4. linear OA(840, 63, F8, 28) (dual of [63, 23, 29]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 63 = 82−1, defining interval I = [0,27], and designed minimum distance d ≥ |I|+1 = 29 [i]
  5. linear OA(89, 14, F8, 8) (dual of [14, 5, 9]-code), using
  6. linear OA(88, 14, F8, 7) (dual of [14, 6, 8]-code), using

Mode: Constructive and linear.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Compare with Markus Grassl’s online database of code parameters.

Other Results with Identical Parameters

None.

Depending Results

None.