Information on Result #714818

Linear OA(867, 86, F8, 43) (dual of [86, 19, 44]-code), using construction XX applied to C1 = C([55,28]), C2 = C([0,35]), C3 = C1 + C2 = C([0,28]), and C∩ = C1 ∩ C2 = C([55,35]) based on
  1. linear OA(850, 63, F8, 37) (dual of [63, 13, 38]-code), using the primitive BCH-code C(I) with length 63 = 82−1, defining interval I = {−8,−7,…,28}, and designed minimum distance d ≥ |I|+1 = 38 [i]
  2. linear OA(848, 63, F8, 36) (dual of [63, 15, 37]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 63 = 82−1, defining interval I = [0,35], and designed minimum distance d ≥ |I|+1 = 37 [i]
  3. linear OA(854, 63, F8, 44) (dual of [63, 9, 45]-code), using the primitive BCH-code C(I) with length 63 = 82−1, defining interval I = {−8,−7,…,35}, and designed minimum distance d ≥ |I|+1 = 45 [i]
  4. linear OA(842, 63, F8, 29) (dual of [63, 21, 30]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 63 = 82−1, defining interval I = [0,28], and designed minimum distance d ≥ |I|+1 = 30 [i]
  5. linear OA(88, 14, F8, 7) (dual of [14, 6, 8]-code), using
  6. linear OA(85, 9, F8, 5) (dual of [9, 4, 6]-code or 9-arc in PG(4,8)), using

Mode: Constructive and linear.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Compare with Markus Grassl’s online database of code parameters.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1Linear OA(866, 85, F8, 42) (dual of [85, 19, 43]-code) [i]Truncation
2Linear OOA(867, 43, F8, 2, 43) (dual of [(43, 2), 19, 44]-NRT-code) [i]OOA Folding