Information on Result #714833

Linear OA(878, 97, F8, 47) (dual of [97, 19, 48]-code), using construction XX applied to C1 = C([8,46]), C2 = C([0,36]), C3 = C1 + C2 = C([8,36]), and C∩ = C1 ∩ C2 = C([0,46]) based on
  1. linear OA(853, 63, F8, 39) (dual of [63, 10, 40]-code), using the primitive BCH-code C(I) with length 63 = 82−1, defining interval I = {8,9,…,46}, and designed minimum distance d ≥ |I|+1 = 40 [i]
  2. linear OA(849, 63, F8, 37) (dual of [63, 14, 38]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 63 = 82−1, defining interval I = [0,36], and designed minimum distance d ≥ |I|+1 = 38 [i]
  3. linear OA(858, 63, F8, 47) (dual of [63, 5, 48]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 63 = 82−1, defining interval I = [0,46], and designed minimum distance d ≥ |I|+1 = 48 [i]
  4. linear OA(842, 63, F8, 29) (dual of [63, 21, 30]-code), using the primitive BCH-code C(I) with length 63 = 82−1, defining interval I = {8,9,…,36}, and designed minimum distance d ≥ |I|+1 = 30 [i]
  5. linear OA(812, 21, F8, 9) (dual of [21, 9, 10]-code), using
  6. linear OA(88, 13, F8, 7) (dual of [13, 5, 8]-code), using

Mode: Constructive and linear.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Compare with Markus Grassl’s online database of code parameters.

Other Results with Identical Parameters

None.

Depending Results

None.