Information on Result #714864

Linear OA(874, 85, F8, 53) (dual of [85, 11, 54]-code), using construction XX applied to C1 = C([8,53]), C2 = C([1,44]), C3 = C1 + C2 = C([8,44]), and C∩ = C1 ∩ C2 = C([1,53]) based on
  1. linear OA(857, 63, F8, 46) (dual of [63, 6, 47]-code), using the primitive BCH-code C(I) with length 63 = 82−1, defining interval I = {8,9,…,53}, and designed minimum distance d ≥ |I|+1 = 47 [i]
  2. linear OA(854, 63, F8, 44) (dual of [63, 9, 45]-code), using the primitive narrow-sense BCH-code C(I) with length 63 = 82−1, defining interval I = [1,44], and designed minimum distance d ≥ |I|+1 = 45 [i]
  3. linear OA(859, 63, F8, 53) (dual of [63, 4, 54]-code), using the primitive narrow-sense BCH-code C(I) with length 63 = 82−1, defining interval I = [1,53], and designed minimum distance d ≥ |I|+1 = 54 [i]
  4. linear OA(850, 63, F8, 37) (dual of [63, 13, 38]-code), using the primitive BCH-code C(I) with length 63 = 82−1, defining interval I = {8,9,…,44}, and designed minimum distance d ≥ |I|+1 = 38 [i]
  5. linear OA(89, 14, F8, 8) (dual of [14, 5, 9]-code), using
  6. linear OA(86, 8, F8, 6) (dual of [8, 2, 7]-code or 8-arc in PG(5,8)), using

Mode: Constructive and linear.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Compare with Markus Grassl’s online database of code parameters.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1Linear OA(873, 84, F8, 52) (dual of [84, 11, 53]-code) [i]Truncation