Information on Result #714870

Linear OA(859, 63, F8, 53) (dual of [63, 4, 54]-code), using the primitive BCH-code C(I) with length 63 = 82−1, defining interval I = {10,11,…,62}, and designed minimum distance d ≥ |I|+1 = 54

Mode: Constructive and linear.

This result is hidden, because other results with identical parameters exist.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Compare with Markus Grassl’s online database of code parameters.

Other Results with Identical Parameters

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1Linear OA(859, 63, F8, 52) (dual of [63, 4, 53]-code) [i]Strength Reduction
2Linear OA(859, 63, F8, 51) (dual of [63, 4, 52]-code) [i]
3Linear OA(8122, 126, F8, 107) (dual of [126, 4, 108]-code) [i]Repeating Each Code Word
4Linear OA(8134, 138, F8, 117) (dual of [138, 4, 118]-code) [i]Juxtaposition
5Linear OA(8139, 143, F8, 121) (dual of [143, 4, 122]-code) [i]
6Linear OA(8162, 166, F8, 141) (dual of [166, 4, 142]-code) [i]
7Linear OA(8167, 171, F8, 145) (dual of [171, 4, 146]-code) [i]
8Linear OA(8171, 175, F8, 149) (dual of [175, 4, 150]-code) [i]
9Linear OA(887, 100, F8, 57) (dual of [100, 13, 58]-code) [i]Construction XX with Cyclic Codes
10Linear OA(882, 91, F8, 62) (dual of [91, 9, 63]-code) [i]
11Linear OA(877, 86, F8, 58) (dual of [86, 9, 59]-code) [i]
12Linear OA(881, 89, F8, 62) (dual of [89, 8, 63]-code) [i]
13Linear OA(877, 85, F8, 59) (dual of [85, 8, 60]-code) [i]
14Linear OA(873, 81, F8, 56) (dual of [81, 8, 57]-code) [i]
15Linear OOA(859, 31, F8, 2, 53) (dual of [(31, 2), 3, 54]-NRT-code) [i]OOA Folding
16Linear OOA(859, 21, F8, 3, 53) (dual of [(21, 3), 4, 54]-NRT-code) [i]