Information on Result #714882

Linear OA(881, 94, F8, 55) (dual of [94, 13, 56]-code), using construction XX applied to C1 = C([9,54]), C2 = C([0,44]), C3 = C1 + C2 = C([9,44]), and C∩ = C1 ∩ C2 = C([0,54]) based on
  1. linear OA(856, 63, F8, 46) (dual of [63, 7, 47]-code), using the primitive BCH-code C(I) with length 63 = 82−1, defining interval I = {9,10,…,54}, and designed minimum distance d ≥ |I|+1 = 47 [i]
  2. linear OA(855, 63, F8, 45) (dual of [63, 8, 46]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 63 = 82−1, defining interval I = [0,44], and designed minimum distance d ≥ |I|+1 = 46 [i]
  3. linear OA(861, 63, F8, 55) (dual of [63, 2, 56]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 63 = 82−1, defining interval I = [0,54], and designed minimum distance d ≥ |I|+1 = 56 [i]
  4. linear OA(848, 63, F8, 36) (dual of [63, 15, 37]-code), using the primitive BCH-code C(I) with length 63 = 82−1, defining interval I = {9,10,…,44}, and designed minimum distance d ≥ |I|+1 = 37 [i]
  5. linear OA(811, 17, F8, 9) (dual of [17, 6, 10]-code), using
  6. linear OA(89, 14, F8, 8) (dual of [14, 5, 9]-code), using

Mode: Constructive and linear.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Compare with Markus Grassl’s online database of code parameters.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1Linear OOA(881, 47, F8, 2, 55) (dual of [(47, 2), 13, 56]-NRT-code) [i]OOA Folding