Information on Result #714883

Linear OA(870, 80, F8, 51) (dual of [80, 10, 52]-code), using construction XX applied to C1 = C([55,37]), C2 = C([0,44]), C3 = C1 + C2 = C([0,37]), and C∩ = C1 ∩ C2 = C([55,44]) based on
  1. linear OA(857, 63, F8, 46) (dual of [63, 6, 47]-code), using the primitive BCH-code C(I) with length 63 = 82−1, defining interval I = {−8,−7,…,37}, and designed minimum distance d ≥ |I|+1 = 47 [i]
  2. linear OA(855, 63, F8, 45) (dual of [63, 8, 46]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 63 = 82−1, defining interval I = [0,44], and designed minimum distance d ≥ |I|+1 = 46 [i]
  3. linear OA(859, 63, F8, 53) (dual of [63, 4, 54]-code), using the primitive BCH-code C(I) with length 63 = 82−1, defining interval I = {−8,−7,…,44}, and designed minimum distance d ≥ |I|+1 = 54 [i]
  4. linear OA(851, 63, F8, 38) (dual of [63, 12, 39]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 63 = 82−1, defining interval I = [0,37], and designed minimum distance d ≥ |I|+1 = 39 [i]
  5. linear OA(85, 9, F8, 5) (dual of [9, 4, 6]-code or 9-arc in PG(4,8)), using
  6. linear OA(86, 8, F8, 6) (dual of [8, 2, 7]-code or 8-arc in PG(5,8)), using

Mode: Constructive and linear.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Compare with Markus Grassl’s online database of code parameters.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1Linear OOA(870, 40, F8, 2, 51) (dual of [(40, 2), 10, 52]-NRT-code) [i]OOA Folding