Information on Result #714891

Linear OA(881, 89, F8, 62) (dual of [89, 8, 63]-code), using construction XX applied to C1 = C([10,62]), C2 = C([1,53]), C3 = C1 + C2 = C([10,53]), and C∩ = C1 ∩ C2 = C([1,62]) based on
  1. linear OA(859, 63, F8, 53) (dual of [63, 4, 54]-code), using the primitive BCH-code C(I) with length 63 = 82−1, defining interval I = {10,11,…,62}, and designed minimum distance d ≥ |I|+1 = 54 [i]
  2. linear OA(859, 63, F8, 53) (dual of [63, 4, 54]-code), using the primitive narrow-sense BCH-code C(I) with length 63 = 82−1, defining interval I = [1,53], and designed minimum distance d ≥ |I|+1 = 54 [i]
  3. linear OA(862, 63, F8, 62) (dual of [63, 1, 63]-code or 63-arc in PG(61,8)), using the primitive narrow-sense BCH-code C(I) with length 63 = 82−1, defining interval I = [1,62], and designed minimum distance d ≥ |I|+1 = 63 [i]
  4. linear OA(854, 63, F8, 44) (dual of [63, 9, 45]-code), using the primitive BCH-code C(I) with length 63 = 82−1, defining interval I = {10,11,…,53}, and designed minimum distance d ≥ |I|+1 = 45 [i]
  5. linear OA(89, 13, F8, 8) (dual of [13, 4, 9]-code), using
  6. linear OA(89, 13, F8, 8) (dual of [13, 4, 9]-code) (see above)

Mode: Constructive and linear.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Compare with Markus Grassl’s online database of code parameters.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1Linear OA(879, 87, F8, 60) (dual of [87, 8, 61]-code) [i]Truncation