Information on Result #714894

Linear OA(878, 86, F8, 60) (dual of [86, 8, 61]-code), using construction XX applied to C1 = C([9,62]), C2 = C([1,53]), C3 = C1 + C2 = C([9,53]), and C∩ = C1 ∩ C2 = C([1,62]) based on
  1. linear OA(860, 63, F8, 54) (dual of [63, 3, 55]-code), using the primitive BCH-code C(I) with length 63 = 82−1, defining interval I = {9,10,…,62}, and designed minimum distance d ≥ |I|+1 = 55 [i]
  2. linear OA(859, 63, F8, 53) (dual of [63, 4, 54]-code), using the primitive narrow-sense BCH-code C(I) with length 63 = 82−1, defining interval I = [1,53], and designed minimum distance d ≥ |I|+1 = 54 [i]
  3. linear OA(862, 63, F8, 62) (dual of [63, 1, 63]-code or 63-arc in PG(61,8)), using the primitive narrow-sense BCH-code C(I) with length 63 = 82−1, defining interval I = [1,62], and designed minimum distance d ≥ |I|+1 = 63 [i]
  4. linear OA(855, 63, F8, 45) (dual of [63, 8, 46]-code), using the primitive BCH-code C(I) with length 63 = 82−1, defining interval I = {9,10,…,53}, and designed minimum distance d ≥ |I|+1 = 46 [i]
  5. linear OA(89, 14, F8, 8) (dual of [14, 5, 9]-code), using
  6. linear OA(85, 9, F8, 5) (dual of [9, 4, 6]-code or 9-arc in PG(4,8)), using

Mode: Constructive and linear.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Compare with Markus Grassl’s online database of code parameters.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1Linear OA(878, 86, F8, 59) (dual of [86, 8, 60]-code) [i]Strength Reduction
2Linear OA(876, 84, F8, 58) (dual of [84, 8, 59]-code) [i]Truncation
3Linear OA(875, 83, F8, 57) (dual of [83, 8, 58]-code) [i]
4Linear OA(874, 82, F8, 56) (dual of [82, 8, 57]-code) [i]
5Linear OOA(878, 43, F8, 2, 60) (dual of [(43, 2), 8, 61]-NRT-code) [i]OOA Folding