Information on Result #714898
Linear OA(867, 511, F8, 26) (dual of [511, 444, 27]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 511 = 83−1, defining interval I = [0,25], and designed minimum distance d ≥ |I|+1 = 27
Mode: Constructive and linear.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
- Primitive BCH-Codes (hidden) [i]
- Primitive BCH-Codes (hidden) [i]
- Primitive BCH-Codes (hidden) [i]
- Primitive BCH-Codes (hidden) [i]
- Primitive BCH-Codes (hidden) [i]
- Primitive BCH-Codes (hidden) [i]
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | Linear OOA(867, 413, F8, 2, 26) (dual of [(413, 2), 759, 27]-NRT-code) | [i] | Embedding of OOA with Gilbert–Varšamov Bound | |
2 | Linear OOA(867, 413, F8, 3, 26) (dual of [(413, 3), 1172, 27]-NRT-code) | [i] | ||
3 | Digital (41, 67, 413)-net over F8 | [i] | ||
4 | Linear OA(8135, 578, F8, 42) (dual of [578, 443, 43]-code) | [i] | ✔ | Construction X with Cyclic Codes |
5 | Linear OA(899, 558, F8, 32) (dual of [558, 459, 33]-code) | [i] | ✔ | Construction XX with Cyclic Codes |
6 | Linear OA(870, 517, F8, 27) (dual of [517, 447, 28]-code) | [i] | ✔ | |
7 | Linear OA(898, 554, F8, 32) (dual of [554, 456, 33]-code) | [i] | ✔ | |
8 | Linear OA(885, 535, F8, 30) (dual of [535, 450, 31]-code) | [i] | ✔ | |
9 | Linear OA(874, 521, F8, 28) (dual of [521, 447, 29]-code) | [i] | ✔ | |
10 | Linear OA(8108, 567, F8, 34) (dual of [567, 459, 35]-code) | [i] | ✔ | |
11 | Linear OA(8107, 562, F8, 34) (dual of [562, 455, 35]-code) | [i] | ✔ | |
12 | Linear OA(8105, 557, F8, 34) (dual of [557, 452, 35]-code) | [i] | ✔ | |
13 | Linear OA(896, 549, F8, 32) (dual of [549, 453, 33]-code) | [i] | ✔ | |
14 | Linear OA(879, 526, F8, 29) (dual of [526, 447, 30]-code) | [i] | ✔ | |
15 | Linear OA(878, 523, F8, 29) (dual of [523, 445, 30]-code) | [i] | ✔ | |
16 | Linear OA(8112, 568, F8, 35) (dual of [568, 456, 36]-code) | [i] | ✔ | |
17 | Linear OA(8107, 563, F8, 34) (dual of [563, 456, 35]-code) | [i] | ✔ | |
18 | Linear OA(894, 544, F8, 32) (dual of [544, 450, 33]-code) | [i] | ✔ | |
19 | Linear OA(883, 530, F8, 30) (dual of [530, 447, 31]-code) | [i] | ✔ | |
20 | Linear OA(8105, 558, F8, 34) (dual of [558, 453, 35]-code) | [i] | ✔ | |
21 | Linear OA(888, 535, F8, 31) (dual of [535, 447, 32]-code) | [i] | ✔ | |
22 | Linear OA(8103, 553, F8, 34) (dual of [553, 450, 35]-code) | [i] | ✔ | |
23 | Linear OA(892, 539, F8, 32) (dual of [539, 447, 33]-code) | [i] | ✔ | |
24 | Linear OA(8101, 548, F8, 34) (dual of [548, 447, 35]-code) | [i] | ✔ | |
25 | Linear OA(873, 517, F8, 28) (dual of [517, 444, 29]-code) | [i] | ✔ | |
26 | Linear OA(877, 521, F8, 29) (dual of [521, 444, 30]-code) | [i] | ✔ | |
27 | Linear OA(881, 523, F8, 30) (dual of [523, 442, 31]-code) | [i] | ✔ | |
28 | Linear OA(886, 530, F8, 31) (dual of [530, 444, 32]-code) | [i] | ✔ | |
29 | Linear OA(891, 535, F8, 32) (dual of [535, 444, 33]-code) | [i] | ✔ | |
30 | Linear OA(8104, 548, F8, 35) (dual of [548, 444, 36]-code) | [i] | ✔ | |
31 | Linear OA(881, 525, F8, 30) (dual of [525, 444, 31]-code) | [i] | ✔ | |
32 | Linear OA(885, 527, F8, 31) (dual of [527, 442, 32]-code) | [i] | ✔ | |
33 | Linear OA(890, 534, F8, 32) (dual of [534, 444, 33]-code) | [i] | ✔ | |
34 | Linear OA(8108, 552, F8, 36) (dual of [552, 444, 37]-code) | [i] | ✔ | |
35 | Linear OA(8106, 545, F8, 36) (dual of [545, 439, 37]-code) | [i] | ✔ | |
36 | Linear OA(8105, 542, F8, 36) (dual of [542, 437, 37]-code) | [i] | ✔ | |
37 | Linear OA(8110, 547, F8, 37) (dual of [547, 437, 38]-code) | [i] | ✔ | |
38 | Linear OA(8117, 561, F8, 38) (dual of [561, 444, 39]-code) | [i] | ✔ | |
39 | Linear OA(8114, 551, F8, 38) (dual of [551, 437, 39]-code) | [i] | ✔ | |
40 | Linear OA(8122, 566, F8, 39) (dual of [566, 444, 40]-code) | [i] | ✔ | |
41 | Linear OA(8135, 579, F8, 42) (dual of [579, 444, 43]-code) | [i] | ✔ |