Information on Result #714945
Linear OA(826, 530, F8, 8) (dual of [530, 504, 9]-code), using construction XX applied to C1 = C([507,2]), C2 = C([0,3]), C3 = C1 + C2 = C([0,2]), and C∩ = C1 ∩ C2 = C([507,3]) based on
- linear OA(819, 511, F8, 7) (dual of [511, 492, 8]-code), using the primitive BCH-code C(I) with length 511 = 83−1, defining interval I = {−4,−3,…,2}, and designed minimum distance d ≥ |I|+1 = 8 [i]
- linear OA(810, 511, F8, 4) (dual of [511, 501, 5]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 511 = 83−1, defining interval I = [0,3], and designed minimum distance d ≥ |I|+1 = 5 [i]
- linear OA(822, 511, F8, 8) (dual of [511, 489, 9]-code), using the primitive BCH-code C(I) with length 511 = 83−1, defining interval I = {−4,−3,…,3}, and designed minimum distance d ≥ |I|+1 = 9 [i]
- linear OA(87, 511, F8, 3) (dual of [511, 504, 4]-code or 511-cap in PG(6,8)), using the primitive expurgated narrow-sense BCH-code C(I) with length 511 = 83−1, defining interval I = [0,2], and designed minimum distance d ≥ |I|+1 = 4 [i]
- linear OA(84, 16, F8, 3) (dual of [16, 12, 4]-code or 16-cap in PG(3,8)), using
- linear OA(80, 3, F8, 0) (dual of [3, 3, 1]-code), using
- discarding factors / shortening the dual code based on linear OA(80, s, F8, 0) (dual of [s, s, 1]-code) for arbitrarily large s, using
Mode: Constructive and linear.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | Linear OOA(826, 265, F8, 2, 8) (dual of [(265, 2), 504, 9]-NRT-code) | [i] | OOA Folding |