Information on Result #715007
Linear OA(827, 522, F8, 10) (dual of [522, 495, 11]-code), using construction XX applied to C1 = C([65,73]), C2 = C([68,74]), C3 = C1 + C2 = C([68,73]), and C∩ = C1 ∩ C2 = C([65,74]) based on
- linear OA(822, 511, F8, 9) (dual of [511, 489, 10]-code), using the primitive BCH-code C(I) with length 511 = 83−1, defining interval I = {65,66,…,73}, and designed minimum distance d ≥ |I|+1 = 10 [i]
- linear OA(819, 511, F8, 7) (dual of [511, 492, 8]-code), using the primitive BCH-code C(I) with length 511 = 83−1, defining interval I = {68,69,…,74}, and designed minimum distance d ≥ |I|+1 = 8 [i]
- linear OA(825, 511, F8, 10) (dual of [511, 486, 11]-code), using the primitive BCH-code C(I) with length 511 = 83−1, defining interval I = {65,66,…,74}, and designed minimum distance d ≥ |I|+1 = 11 [i]
- linear OA(816, 511, F8, 6) (dual of [511, 495, 7]-code), using the primitive BCH-code C(I) with length 511 = 83−1, defining interval I = {68,69,…,73}, and designed minimum distance d ≥ |I|+1 = 7 [i]
- linear OA(82, 8, F8, 2) (dual of [8, 6, 3]-code or 8-arc in PG(1,8)), using
- Reed–Solomon code RS(6,8) [i]
- linear OA(80, 3, F8, 0) (dual of [3, 3, 1]-code), using
- discarding factors / shortening the dual code based on linear OA(80, s, F8, 0) (dual of [s, s, 1]-code) for arbitrarily large s, using
Mode: Constructive and linear.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | Linear OOA(827, 261, F8, 2, 10) (dual of [(261, 2), 495, 11]-NRT-code) | [i] | OOA Folding | |
2 | Linear OOA(827, 174, F8, 3, 10) (dual of [(174, 3), 495, 11]-NRT-code) | [i] |