Information on Result #715026
Linear OA(835, 528, F8, 12) (dual of [528, 493, 13]-code), using construction XX applied to C1 = C([510,8]), C2 = C([3,10]), C3 = C1 + C2 = C([3,8]), and C∩ = C1 ∩ C2 = C([510,10]) based on
- linear OA(825, 511, F8, 10) (dual of [511, 486, 11]-code), using the primitive BCH-code C(I) with length 511 = 83−1, defining interval I = {−1,0,…,8}, and designed minimum distance d ≥ |I|+1 = 11 [i]
- linear OA(824, 511, F8, 8) (dual of [511, 487, 9]-code), using the primitive BCH-code C(I) with length 511 = 83−1, defining interval I = {3,4,…,10}, and designed minimum distance d ≥ |I|+1 = 9 [i]
- linear OA(831, 511, F8, 12) (dual of [511, 480, 13]-code), using the primitive BCH-code C(I) with length 511 = 83−1, defining interval I = {−1,0,…,10}, and designed minimum distance d ≥ |I|+1 = 13 [i]
- linear OA(818, 511, F8, 6) (dual of [511, 493, 7]-code), using the primitive BCH-code C(I) with length 511 = 83−1, defining interval I = {3,4,…,8}, and designed minimum distance d ≥ |I|+1 = 7 [i]
- linear OA(83, 10, F8, 3) (dual of [10, 7, 4]-code or 10-arc in PG(2,8) or 10-cap in PG(2,8)), using
- linear OA(81, 7, F8, 1) (dual of [7, 6, 2]-code), using
- discarding factors / shortening the dual code based on linear OA(81, 8, F8, 1) (dual of [8, 7, 2]-code), using
- Reed–Solomon code RS(7,8) [i]
- discarding factors / shortening the dual code based on linear OA(81, 8, F8, 1) (dual of [8, 7, 2]-code), using
Mode: Constructive and linear.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | Linear OOA(835, 264, F8, 2, 12) (dual of [(264, 2), 493, 13]-NRT-code) | [i] | OOA Folding | |
2 | Linear OOA(835, 176, F8, 3, 12) (dual of [(176, 3), 493, 13]-NRT-code) | [i] |