Information on Result #715186
Linear OA(851, 529, F8, 18) (dual of [529, 478, 19]-code), using construction XX applied to C1 = C([57,72]), C2 = C([61,74]), C3 = C1 + C2 = C([61,72]), and C∩ = C1 ∩ C2 = C([57,74]) based on
- linear OA(842, 511, F8, 16) (dual of [511, 469, 17]-code), using the primitive BCH-code C(I) with length 511 = 83−1, defining interval I = {57,58,…,72}, and designed minimum distance d ≥ |I|+1 = 17 [i]
- linear OA(837, 511, F8, 14) (dual of [511, 474, 15]-code), using the primitive BCH-code C(I) with length 511 = 83−1, defining interval I = {61,62,…,74}, and designed minimum distance d ≥ |I|+1 = 15 [i]
- linear OA(846, 511, F8, 18) (dual of [511, 465, 19]-code), using the primitive BCH-code C(I) with length 511 = 83−1, defining interval I = {57,58,…,74}, and designed minimum distance d ≥ |I|+1 = 19 [i]
- linear OA(833, 511, F8, 12) (dual of [511, 478, 13]-code), using the primitive BCH-code C(I) with length 511 = 83−1, defining interval I = {61,62,…,72}, and designed minimum distance d ≥ |I|+1 = 13 [i]
- linear OA(84, 13, F8, 3) (dual of [13, 9, 4]-code or 13-cap in PG(3,8)), using
- linear OA(81, 5, F8, 1) (dual of [5, 4, 2]-code), using
- discarding factors / shortening the dual code based on linear OA(81, 8, F8, 1) (dual of [8, 7, 2]-code), using
- Reed–Solomon code RS(7,8) [i]
- discarding factors / shortening the dual code based on linear OA(81, 8, F8, 1) (dual of [8, 7, 2]-code), using
Mode: Constructive and linear.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
None.