Information on Result #715197
Linear OA(859, 536, F8, 20) (dual of [536, 477, 21]-code), using construction XX applied to C1 = C([55,73]), C2 = C([61,74]), C3 = C1 + C2 = C([61,73]), and C∩ = C1 ∩ C2 = C([55,74]) based on
- linear OA(849, 511, F8, 19) (dual of [511, 462, 20]-code), using the primitive BCH-code C(I) with length 511 = 83−1, defining interval I = {55,56,…,73}, and designed minimum distance d ≥ |I|+1 = 20 [i]
- linear OA(837, 511, F8, 14) (dual of [511, 474, 15]-code), using the primitive BCH-code C(I) with length 511 = 83−1, defining interval I = {61,62,…,74}, and designed minimum distance d ≥ |I|+1 = 15 [i]
- linear OA(852, 511, F8, 20) (dual of [511, 459, 21]-code), using the primitive BCH-code C(I) with length 511 = 83−1, defining interval I = {55,56,…,74}, and designed minimum distance d ≥ |I|+1 = 21 [i]
- linear OA(834, 511, F8, 13) (dual of [511, 477, 14]-code), using the primitive BCH-code C(I) with length 511 = 83−1, defining interval I = {61,62,…,73}, and designed minimum distance d ≥ |I|+1 = 14 [i]
- linear OA(87, 22, F8, 5) (dual of [22, 15, 6]-code), using
- discarding factors / shortening the dual code based on linear OA(87, 57, F8, 5) (dual of [57, 50, 6]-code), using
- linear OA(80, 3, F8, 0) (dual of [3, 3, 1]-code), using
- discarding factors / shortening the dual code based on linear OA(80, s, F8, 0) (dual of [s, s, 1]-code) for arbitrarily large s, using
Mode: Constructive and linear.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | Linear OOA(859, 268, F8, 2, 20) (dual of [(268, 2), 477, 21]-NRT-code) | [i] | OOA Folding |