Information on Result #715370
Linear OA(863, 532, F8, 22) (dual of [532, 469, 23]-code), using construction XX applied to C1 = C([508,16]), C2 = C([1,18]), C3 = C1 + C2 = C([1,16]), and C∩ = C1 ∩ C2 = C([508,18]) based on
- linear OA(852, 511, F8, 20) (dual of [511, 459, 21]-code), using the primitive BCH-code C(I) with length 511 = 83−1, defining interval I = {−3,−2,…,16}, and designed minimum distance d ≥ |I|+1 = 21 [i]
- linear OA(848, 511, F8, 18) (dual of [511, 463, 19]-code), using the primitive narrow-sense BCH-code C(I) with length 511 = 83−1, defining interval I = [1,18], and designed minimum distance d ≥ |I|+1 = 19 [i]
- linear OA(858, 511, F8, 22) (dual of [511, 453, 23]-code), using the primitive BCH-code C(I) with length 511 = 83−1, defining interval I = {−3,−2,…,18}, and designed minimum distance d ≥ |I|+1 = 23 [i]
- linear OA(842, 511, F8, 16) (dual of [511, 469, 17]-code), using the primitive narrow-sense BCH-code C(I) with length 511 = 83−1, defining interval I = [1,16], and designed minimum distance d ≥ |I|+1 = 17 [i]
- linear OA(84, 14, F8, 3) (dual of [14, 10, 4]-code or 14-cap in PG(3,8)), using
- linear OA(81, 7, F8, 1) (dual of [7, 6, 2]-code), using
- discarding factors / shortening the dual code based on linear OA(81, 8, F8, 1) (dual of [8, 7, 2]-code), using
- Reed–Solomon code RS(7,8) [i]
- discarding factors / shortening the dual code based on linear OA(81, 8, F8, 1) (dual of [8, 7, 2]-code), using
Mode: Constructive and linear.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | Linear OOA(863, 266, F8, 2, 22) (dual of [(266, 2), 469, 23]-NRT-code) | [i] | OOA Folding |