Information on Result #715392
Linear OA(860, 523, F8, 22) (dual of [523, 463, 23]-code), using construction XX applied to C1 = C([508,17]), C2 = C([0,18]), C3 = C1 + C2 = C([0,17]), and C∩ = C1 ∩ C2 = C([508,18]) based on
- linear OA(855, 511, F8, 21) (dual of [511, 456, 22]-code), using the primitive BCH-code C(I) with length 511 = 83−1, defining interval I = {−3,−2,…,17}, and designed minimum distance d ≥ |I|+1 = 22 [i]
- linear OA(849, 511, F8, 19) (dual of [511, 462, 20]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 511 = 83−1, defining interval I = [0,18], and designed minimum distance d ≥ |I|+1 = 20 [i]
- linear OA(858, 511, F8, 22) (dual of [511, 453, 23]-code), using the primitive BCH-code C(I) with length 511 = 83−1, defining interval I = {−3,−2,…,18}, and designed minimum distance d ≥ |I|+1 = 23 [i]
- linear OA(846, 511, F8, 18) (dual of [511, 465, 19]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 511 = 83−1, defining interval I = [0,17], and designed minimum distance d ≥ |I|+1 = 19 [i]
- linear OA(82, 9, F8, 2) (dual of [9, 7, 3]-code or 9-arc in PG(1,8)), using
- extended Reed–Solomon code RSe(7,8) [i]
- Hamming code H(2,8) [i]
- linear OA(80, 3, F8, 0) (dual of [3, 3, 1]-code), using
- discarding factors / shortening the dual code based on linear OA(80, s, F8, 0) (dual of [s, s, 1]-code) for arbitrarily large s, using
Mode: Constructive and linear.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
None.