Information on Result #715538

Linear OA(8101, 566, F8, 31) (dual of [566, 465, 32]-code), using construction XX applied to C1 = C([503,17]), C2 = C([0,22]), C3 = C1 + C2 = C([0,17]), and C∩ = C1 ∩ C2 = C([503,22]) based on
  1. linear OA(867, 511, F8, 26) (dual of [511, 444, 27]-code), using the primitive BCH-code C(I) with length 511 = 83−1, defining interval I = {−8,−7,…,17}, and designed minimum distance d ≥ |I|+1 = 27 [i]
  2. linear OA(861, 511, F8, 23) (dual of [511, 450, 24]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 511 = 83−1, defining interval I = [0,22], and designed minimum distance d ≥ |I|+1 = 24 [i]
  3. linear OA(882, 511, F8, 31) (dual of [511, 429, 32]-code), using the primitive BCH-code C(I) with length 511 = 83−1, defining interval I = {−8,−7,…,22}, and designed minimum distance d ≥ |I|+1 = 32 [i]
  4. linear OA(846, 511, F8, 18) (dual of [511, 465, 19]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 511 = 83−1, defining interval I = [0,17], and designed minimum distance d ≥ |I|+1 = 19 [i]
  5. linear OA(813, 34, F8, 7) (dual of [34, 21, 8]-code), using
  6. linear OA(86, 21, F8, 4) (dual of [21, 15, 5]-code), using

Mode: Constructive and linear.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1Linear OOA(8101, 283, F8, 2, 31) (dual of [(283, 2), 465, 32]-NRT-code) [i]OOA Folding