Information on Result #715543
Linear OA(875, 529, F8, 27) (dual of [529, 454, 28]-code), using construction XX applied to C1 = C([48,72]), C2 = C([52,74]), C3 = C1 + C2 = C([52,72]), and C∩ = C1 ∩ C2 = C([48,74]) based on
- linear OA(866, 511, F8, 25) (dual of [511, 445, 26]-code), using the primitive BCH-code C(I) with length 511 = 83−1, defining interval I = {48,49,…,72}, and designed minimum distance d ≥ |I|+1 = 26 [i]
- linear OA(861, 511, F8, 23) (dual of [511, 450, 24]-code), using the primitive BCH-code C(I) with length 511 = 83−1, defining interval I = {52,53,…,74}, and designed minimum distance d ≥ |I|+1 = 24 [i]
- linear OA(870, 511, F8, 27) (dual of [511, 441, 28]-code), using the primitive BCH-code C(I) with length 511 = 83−1, defining interval I = {48,49,…,74}, and designed minimum distance d ≥ |I|+1 = 28 [i]
- linear OA(857, 511, F8, 21) (dual of [511, 454, 22]-code), using the primitive BCH-code C(I) with length 511 = 83−1, defining interval I = {52,53,…,72}, and designed minimum distance d ≥ |I|+1 = 22 [i]
- linear OA(84, 13, F8, 3) (dual of [13, 9, 4]-code or 13-cap in PG(3,8)), using
- linear OA(81, 5, F8, 1) (dual of [5, 4, 2]-code), using
- discarding factors / shortening the dual code based on linear OA(81, 8, F8, 1) (dual of [8, 7, 2]-code), using
- Reed–Solomon code RS(7,8) [i]
- discarding factors / shortening the dual code based on linear OA(81, 8, F8, 1) (dual of [8, 7, 2]-code), using
Mode: Constructive and linear.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
None.