Information on Result #715632
Linear OA(877, 528, F8, 28) (dual of [528, 451, 29]-code), using construction XX applied to C1 = C([48,73]), C2 = C([52,75]), C3 = C1 + C2 = C([52,73]), and C∩ = C1 ∩ C2 = C([48,75]) based on
- linear OA(867, 511, F8, 26) (dual of [511, 444, 27]-code), using the primitive BCH-code C(I) with length 511 = 83−1, defining interval I = {48,49,…,73}, and designed minimum distance d ≥ |I|+1 = 27 [i]
- linear OA(864, 511, F8, 24) (dual of [511, 447, 25]-code), using the primitive BCH-code C(I) with length 511 = 83−1, defining interval I = {52,53,…,75}, and designed minimum distance d ≥ |I|+1 = 25 [i]
- linear OA(873, 511, F8, 28) (dual of [511, 438, 29]-code), using the primitive BCH-code C(I) with length 511 = 83−1, defining interval I = {48,49,…,75}, and designed minimum distance d ≥ |I|+1 = 29 [i]
- linear OA(858, 511, F8, 22) (dual of [511, 453, 23]-code), using the primitive BCH-code C(I) with length 511 = 83−1, defining interval I = {52,53,…,73}, and designed minimum distance d ≥ |I|+1 = 23 [i]
- linear OA(83, 10, F8, 3) (dual of [10, 7, 4]-code or 10-arc in PG(2,8) or 10-cap in PG(2,8)), using
- linear OA(81, 7, F8, 1) (dual of [7, 6, 2]-code), using
- discarding factors / shortening the dual code based on linear OA(81, 8, F8, 1) (dual of [8, 7, 2]-code), using
- Reed–Solomon code RS(7,8) [i]
- discarding factors / shortening the dual code based on linear OA(81, 8, F8, 1) (dual of [8, 7, 2]-code), using
Mode: Constructive and linear.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | Linear OOA(877, 264, F8, 2, 28) (dual of [(264, 2), 451, 29]-NRT-code) | [i] | OOA Folding |