Information on Result #715647

Linear OA(8103, 565, F8, 32) (dual of [565, 462, 33]-code), using construction XX applied to C1 = C([503,18]), C2 = C([0,24]), C3 = C1 + C2 = C([0,18]), and C∩ = C1 ∩ C2 = C([503,24]) based on
  1. linear OA(870, 511, F8, 27) (dual of [511, 441, 28]-code), using the primitive BCH-code C(I) with length 511 = 83−1, defining interval I = {−8,−7,…,18}, and designed minimum distance d ≥ |I|+1 = 28 [i]
  2. linear OA(864, 511, F8, 25) (dual of [511, 447, 26]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 511 = 83−1, defining interval I = [0,24], and designed minimum distance d ≥ |I|+1 = 26 [i]
  3. linear OA(885, 511, F8, 33) (dual of [511, 426, 34]-code), using the primitive BCH-code C(I) with length 511 = 83−1, defining interval I = {−8,−7,…,24}, and designed minimum distance d ≥ |I|+1 = 34 [i]
  4. linear OA(849, 511, F8, 19) (dual of [511, 462, 20]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 511 = 83−1, defining interval I = [0,18], and designed minimum distance d ≥ |I|+1 = 20 [i]
  5. linear OA(811, 32, F8, 6) (dual of [32, 21, 7]-code), using
  6. linear OA(87, 22, F8, 5) (dual of [22, 15, 6]-code), using

Mode: Constructive and linear.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1Linear OOA(8103, 282, F8, 2, 32) (dual of [(282, 2), 461, 33]-NRT-code) [i]OOA Folding