Information on Result #715651
Linear OA(881, 531, F8, 29) (dual of [531, 450, 30]-code), using construction XX applied to C1 = C([507,22]), C2 = C([0,24]), C3 = C1 + C2 = C([0,22]), and C∩ = C1 ∩ C2 = C([507,24]) based on
- linear OA(873, 511, F8, 27) (dual of [511, 438, 28]-code), using the primitive BCH-code C(I) with length 511 = 83−1, defining interval I = {−4,−3,…,22}, and designed minimum distance d ≥ |I|+1 = 28 [i]
- linear OA(864, 511, F8, 25) (dual of [511, 447, 26]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 511 = 83−1, defining interval I = [0,24], and designed minimum distance d ≥ |I|+1 = 26 [i]
- linear OA(876, 511, F8, 29) (dual of [511, 435, 30]-code), using the primitive BCH-code C(I) with length 511 = 83−1, defining interval I = {−4,−3,…,24}, and designed minimum distance d ≥ |I|+1 = 30 [i]
- linear OA(861, 511, F8, 23) (dual of [511, 450, 24]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 511 = 83−1, defining interval I = [0,22], and designed minimum distance d ≥ |I|+1 = 24 [i]
- linear OA(84, 16, F8, 3) (dual of [16, 12, 4]-code or 16-cap in PG(3,8)), using
- linear OA(81, 4, F8, 1) (dual of [4, 3, 2]-code), using
- discarding factors / shortening the dual code based on linear OA(81, 8, F8, 1) (dual of [8, 7, 2]-code), using
- Reed–Solomon code RS(7,8) [i]
- discarding factors / shortening the dual code based on linear OA(81, 8, F8, 1) (dual of [8, 7, 2]-code), using
Mode: Constructive and linear.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | Linear OOA(881, 265, F8, 2, 29) (dual of [(265, 2), 449, 30]-NRT-code) | [i] | OOA Folding |