Information on Result #715671
Linear OA(876, 526, F8, 28) (dual of [526, 450, 29]-code), using construction XX applied to C1 = C([48,73]), C2 = C([51,75]), C3 = C1 + C2 = C([51,73]), and C∩ = C1 ∩ C2 = C([48,75]) based on
- linear OA(867, 511, F8, 26) (dual of [511, 444, 27]-code), using the primitive BCH-code C(I) with length 511 = 83−1, defining interval I = {48,49,…,73}, and designed minimum distance d ≥ |I|+1 = 27 [i]
- linear OA(867, 511, F8, 25) (dual of [511, 444, 26]-code), using the primitive BCH-code C(I) with length 511 = 83−1, defining interval I = {51,52,…,75}, and designed minimum distance d ≥ |I|+1 = 26 [i]
- linear OA(873, 511, F8, 28) (dual of [511, 438, 29]-code), using the primitive BCH-code C(I) with length 511 = 83−1, defining interval I = {48,49,…,75}, and designed minimum distance d ≥ |I|+1 = 29 [i]
- linear OA(861, 511, F8, 23) (dual of [511, 450, 24]-code), using the primitive BCH-code C(I) with length 511 = 83−1, defining interval I = {51,52,…,73}, and designed minimum distance d ≥ |I|+1 = 24 [i]
- linear OA(82, 8, F8, 2) (dual of [8, 6, 3]-code or 8-arc in PG(1,8)), using
- Reed–Solomon code RS(6,8) [i]
- linear OA(81, 7, F8, 1) (dual of [7, 6, 2]-code), using
- discarding factors / shortening the dual code based on linear OA(81, 8, F8, 1) (dual of [8, 7, 2]-code), using
- Reed–Solomon code RS(7,8) [i]
- discarding factors / shortening the dual code based on linear OA(81, 8, F8, 1) (dual of [8, 7, 2]-code), using
Mode: Constructive and linear.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | Linear OOA(876, 263, F8, 2, 28) (dual of [(263, 2), 450, 29]-NRT-code) | [i] | OOA Folding |