Information on Result #715687

Linear OA(8108, 567, F8, 34) (dual of [567, 459, 35]-code), using construction XX applied to C1 = C([503,19]), C2 = C([0,25]), C3 = C1 + C2 = C([0,19]), and C∩ = C1 ∩ C2 = C([503,25]) based on
  1. linear OA(873, 511, F8, 28) (dual of [511, 438, 29]-code), using the primitive BCH-code C(I) with length 511 = 83−1, defining interval I = {−8,−7,…,19}, and designed minimum distance d ≥ |I|+1 = 29 [i]
  2. linear OA(867, 511, F8, 26) (dual of [511, 444, 27]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 511 = 83−1, defining interval I = [0,25], and designed minimum distance d ≥ |I|+1 = 27 [i]
  3. linear OA(888, 511, F8, 34) (dual of [511, 423, 35]-code), using the primitive BCH-code C(I) with length 511 = 83−1, defining interval I = {−8,−7,…,25}, and designed minimum distance d ≥ |I|+1 = 35 [i]
  4. linear OA(852, 511, F8, 20) (dual of [511, 459, 21]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 511 = 83−1, defining interval I = [0,19], and designed minimum distance d ≥ |I|+1 = 21 [i]
  5. linear OA(813, 34, F8, 7) (dual of [34, 21, 8]-code), using
  6. linear OA(87, 22, F8, 5) (dual of [22, 15, 6]-code), using

Mode: Constructive and linear.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1Linear OOA(8108, 283, F8, 2, 34) (dual of [(283, 2), 458, 35]-NRT-code) [i]OOA Folding