Information on Result #715699
Linear OA(894, 544, F8, 32) (dual of [544, 450, 33]-code), using construction XX applied to C1 = C([505,22]), C2 = C([0,25]), C3 = C1 + C2 = C([0,22]), and C∩ = C1 ∩ C2 = C([505,25]) based on
- linear OA(879, 511, F8, 29) (dual of [511, 432, 30]-code), using the primitive BCH-code C(I) with length 511 = 83−1, defining interval I = {−6,−5,…,22}, and designed minimum distance d ≥ |I|+1 = 30 [i]
- linear OA(867, 511, F8, 26) (dual of [511, 444, 27]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 511 = 83−1, defining interval I = [0,25], and designed minimum distance d ≥ |I|+1 = 27 [i]
- linear OA(885, 511, F8, 32) (dual of [511, 426, 33]-code), using the primitive BCH-code C(I) with length 511 = 83−1, defining interval I = {−6,−5,…,25}, and designed minimum distance d ≥ |I|+1 = 33 [i]
- linear OA(861, 511, F8, 23) (dual of [511, 450, 24]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 511 = 83−1, defining interval I = [0,22], and designed minimum distance d ≥ |I|+1 = 24 [i]
- linear OA(87, 25, F8, 5) (dual of [25, 18, 6]-code), using
- discarding factors / shortening the dual code based on linear OA(87, 57, F8, 5) (dual of [57, 50, 6]-code), using
- linear OA(82, 8, F8, 2) (dual of [8, 6, 3]-code or 8-arc in PG(1,8)), using
- Reed–Solomon code RS(6,8) [i]
Mode: Constructive and linear.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | Linear OOA(894, 272, F8, 2, 32) (dual of [(272, 2), 450, 33]-NRT-code) | [i] | OOA Folding |