Information on Result #715726
Linear OA(873, 517, F8, 28) (dual of [517, 444, 29]-code), using construction XX applied to C1 = C([510,25]), C2 = C([0,26]), C3 = C1 + C2 = C([0,25]), and C∩ = C1 ∩ C2 = C([510,26]) based on
- linear OA(870, 511, F8, 27) (dual of [511, 441, 28]-code), using the primitive BCH-code C(I) with length 511 = 83−1, defining interval I = {−1,0,…,25}, and designed minimum distance d ≥ |I|+1 = 28 [i]
- linear OA(870, 511, F8, 27) (dual of [511, 441, 28]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 511 = 83−1, defining interval I = [0,26], and designed minimum distance d ≥ |I|+1 = 28 [i]
- linear OA(873, 511, F8, 28) (dual of [511, 438, 29]-code), using the primitive BCH-code C(I) with length 511 = 83−1, defining interval I = {−1,0,…,26}, and designed minimum distance d ≥ |I|+1 = 29 [i]
- linear OA(867, 511, F8, 26) (dual of [511, 444, 27]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 511 = 83−1, defining interval I = [0,25], and designed minimum distance d ≥ |I|+1 = 27 [i]
- linear OA(80, 3, F8, 0) (dual of [3, 3, 1]-code), using
- discarding factors / shortening the dual code based on linear OA(80, s, F8, 0) (dual of [s, s, 1]-code) for arbitrarily large s, using
- linear OA(80, 3, F8, 0) (dual of [3, 3, 1]-code) (see above)
Mode: Constructive and linear.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | Linear OOA(873, 258, F8, 2, 28) (dual of [(258, 2), 443, 29]-NRT-code) | [i] | OOA Folding |