Information on Result #715762
Linear OA(881, 525, F8, 30) (dual of [525, 444, 31]-code), using construction XX applied to C1 = C([509,25]), C2 = C([0,27]), C3 = C1 + C2 = C([0,25]), and C∩ = C1 ∩ C2 = C([509,27]) based on
- linear OA(873, 511, F8, 28) (dual of [511, 438, 29]-code), using the primitive BCH-code C(I) with length 511 = 83−1, defining interval I = {−2,−1,…,25}, and designed minimum distance d ≥ |I|+1 = 29 [i]
- linear OA(873, 511, F8, 28) (dual of [511, 438, 29]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 511 = 83−1, defining interval I = [0,27], and designed minimum distance d ≥ |I|+1 = 29 [i]
- linear OA(879, 511, F8, 30) (dual of [511, 432, 31]-code), using the primitive BCH-code C(I) with length 511 = 83−1, defining interval I = {−2,−1,…,27}, and designed minimum distance d ≥ |I|+1 = 31 [i]
- linear OA(867, 511, F8, 26) (dual of [511, 444, 27]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 511 = 83−1, defining interval I = [0,25], and designed minimum distance d ≥ |I|+1 = 27 [i]
- linear OA(81, 7, F8, 1) (dual of [7, 6, 2]-code), using
- discarding factors / shortening the dual code based on linear OA(81, 8, F8, 1) (dual of [8, 7, 2]-code), using
- Reed–Solomon code RS(7,8) [i]
- discarding factors / shortening the dual code based on linear OA(81, 8, F8, 1) (dual of [8, 7, 2]-code), using
- linear OA(81, 7, F8, 1) (dual of [7, 6, 2]-code) (see above)
Mode: Constructive and linear.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | Linear OOA(881, 262, F8, 2, 30) (dual of [(262, 2), 443, 31]-NRT-code) | [i] | OOA Folding |