Information on Result #715861
Linear OA(892, 526, F8, 34) (dual of [526, 434, 35]-code), using construction XX applied to C1 = C([41,72]), C2 = C([45,74]), C3 = C1 + C2 = C([45,72]), and C∩ = C1 ∩ C2 = C([41,74]) based on
- linear OA(884, 511, F8, 32) (dual of [511, 427, 33]-code), using the primitive BCH-code C(I) with length 511 = 83−1, defining interval I = {41,42,…,72}, and designed minimum distance d ≥ |I|+1 = 33 [i]
- linear OA(879, 511, F8, 30) (dual of [511, 432, 31]-code), using the primitive BCH-code C(I) with length 511 = 83−1, defining interval I = {45,46,…,74}, and designed minimum distance d ≥ |I|+1 = 31 [i]
- linear OA(888, 511, F8, 34) (dual of [511, 423, 35]-code), using the primitive BCH-code C(I) with length 511 = 83−1, defining interval I = {41,42,…,74}, and designed minimum distance d ≥ |I|+1 = 35 [i]
- linear OA(875, 511, F8, 28) (dual of [511, 436, 29]-code), using the primitive BCH-code C(I) with length 511 = 83−1, defining interval I = {45,46,…,72}, and designed minimum distance d ≥ |I|+1 = 29 [i]
- linear OA(83, 10, F8, 3) (dual of [10, 7, 4]-code or 10-arc in PG(2,8) or 10-cap in PG(2,8)), using
- linear OA(81, 5, F8, 1) (dual of [5, 4, 2]-code), using
- discarding factors / shortening the dual code based on linear OA(81, 8, F8, 1) (dual of [8, 7, 2]-code), using
- Reed–Solomon code RS(7,8) [i]
- discarding factors / shortening the dual code based on linear OA(81, 8, F8, 1) (dual of [8, 7, 2]-code), using
Mode: Constructive and linear.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | Linear OOA(892, 263, F8, 2, 34) (dual of [(263, 2), 434, 35]-NRT-code) | [i] | OOA Folding |