Information on Result #715929
Linear OA(896, 531, F8, 35) (dual of [531, 435, 36]-code), using construction XX applied to C1 = C([41,73]), C2 = C([45,75]), C3 = C1 + C2 = C([45,73]), and C∩ = C1 ∩ C2 = C([41,75]) based on
- linear OA(885, 511, F8, 33) (dual of [511, 426, 34]-code), using the primitive BCH-code C(I) with length 511 = 83−1, defining interval I = {41,42,…,73}, and designed minimum distance d ≥ |I|+1 = 34 [i]
- linear OA(882, 511, F8, 31) (dual of [511, 429, 32]-code), using the primitive BCH-code C(I) with length 511 = 83−1, defining interval I = {45,46,…,75}, and designed minimum distance d ≥ |I|+1 = 32 [i]
- linear OA(891, 511, F8, 35) (dual of [511, 420, 36]-code), using the primitive BCH-code C(I) with length 511 = 83−1, defining interval I = {41,42,…,75}, and designed minimum distance d ≥ |I|+1 = 36 [i]
- linear OA(876, 511, F8, 29) (dual of [511, 435, 30]-code), using the primitive BCH-code C(I) with length 511 = 83−1, defining interval I = {45,46,…,73}, and designed minimum distance d ≥ |I|+1 = 30 [i]
- linear OA(84, 13, F8, 3) (dual of [13, 9, 4]-code or 13-cap in PG(3,8)), using
- linear OA(81, 7, F8, 1) (dual of [7, 6, 2]-code), using
- discarding factors / shortening the dual code based on linear OA(81, 8, F8, 1) (dual of [8, 7, 2]-code), using
- Reed–Solomon code RS(7,8) [i]
- discarding factors / shortening the dual code based on linear OA(81, 8, F8, 1) (dual of [8, 7, 2]-code), using
Mode: Constructive and linear.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
None.