Information on Result #715955
Linear OA(8109, 542, F8, 38) (dual of [542, 433, 39]-code), using construction XX applied to C1 = C([506,29]), C2 = C([1,32]), C3 = C1 + C2 = C([1,29]), and C∩ = C1 ∩ C2 = C([506,32]) based on
- linear OA(894, 511, F8, 35) (dual of [511, 417, 36]-code), using the primitive BCH-code C(I) with length 511 = 83−1, defining interval I = {−5,−4,…,29}, and designed minimum distance d ≥ |I|+1 = 36 [i]
- linear OA(884, 511, F8, 32) (dual of [511, 427, 33]-code), using the primitive narrow-sense BCH-code C(I) with length 511 = 83−1, defining interval I = [1,32], and designed minimum distance d ≥ |I|+1 = 33 [i]
- linear OA(8100, 511, F8, 38) (dual of [511, 411, 39]-code), using the primitive BCH-code C(I) with length 511 = 83−1, defining interval I = {−5,−4,…,32}, and designed minimum distance d ≥ |I|+1 = 39 [i]
- linear OA(878, 511, F8, 29) (dual of [511, 433, 30]-code), using the primitive narrow-sense BCH-code C(I) with length 511 = 83−1, defining interval I = [1,29], and designed minimum distance d ≥ |I|+1 = 30 [i]
- linear OA(87, 23, F8, 5) (dual of [23, 16, 6]-code), using
- discarding factors / shortening the dual code based on linear OA(87, 57, F8, 5) (dual of [57, 50, 6]-code), using
- linear OA(82, 8, F8, 2) (dual of [8, 6, 3]-code or 8-arc in PG(1,8)), using
- Reed–Solomon code RS(6,8) [i]
Mode: Constructive and linear.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | Linear OOA(8109, 271, F8, 2, 38) (dual of [(271, 2), 433, 39]-NRT-code) | [i] | OOA Folding |