Information on Result #715995
Linear OA(894, 526, F8, 35) (dual of [526, 432, 36]-code), using construction XX applied to C1 = C([41,73]), C2 = C([44,75]), C3 = C1 + C2 = C([44,73]), and C∩ = C1 ∩ C2 = C([41,75]) based on
- linear OA(885, 511, F8, 33) (dual of [511, 426, 34]-code), using the primitive BCH-code C(I) with length 511 = 83−1, defining interval I = {41,42,…,73}, and designed minimum distance d ≥ |I|+1 = 34 [i]
- linear OA(885, 511, F8, 32) (dual of [511, 426, 33]-code), using the primitive BCH-code C(I) with length 511 = 83−1, defining interval I = {44,45,…,75}, and designed minimum distance d ≥ |I|+1 = 33 [i]
- linear OA(891, 511, F8, 35) (dual of [511, 420, 36]-code), using the primitive BCH-code C(I) with length 511 = 83−1, defining interval I = {41,42,…,75}, and designed minimum distance d ≥ |I|+1 = 36 [i]
- linear OA(879, 511, F8, 30) (dual of [511, 432, 31]-code), using the primitive BCH-code C(I) with length 511 = 83−1, defining interval I = {44,45,…,73}, and designed minimum distance d ≥ |I|+1 = 31 [i]
- linear OA(82, 8, F8, 2) (dual of [8, 6, 3]-code or 8-arc in PG(1,8)), using
- Reed–Solomon code RS(6,8) [i]
- linear OA(81, 7, F8, 1) (dual of [7, 6, 2]-code), using
- discarding factors / shortening the dual code based on linear OA(81, 8, F8, 1) (dual of [8, 7, 2]-code), using
- Reed–Solomon code RS(7,8) [i]
- discarding factors / shortening the dual code based on linear OA(81, 8, F8, 1) (dual of [8, 7, 2]-code), using
Mode: Constructive and linear.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | Linear OOA(894, 263, F8, 2, 35) (dual of [(263, 2), 432, 36]-NRT-code) | [i] | OOA Folding |