Information on Result #716099
Linear OA(8131, 562, F8, 43) (dual of [562, 431, 44]-code), using construction XX applied to C1 = C([503,28]), C2 = C([0,34]), C3 = C1 + C2 = C([0,28]), and C∩ = C1 ∩ C2 = C([503,34]) based on
- linear OA(897, 511, F8, 37) (dual of [511, 414, 38]-code), using the primitive BCH-code C(I) with length 511 = 83−1, defining interval I = {−8,−7,…,28}, and designed minimum distance d ≥ |I|+1 = 38 [i]
- linear OA(891, 511, F8, 35) (dual of [511, 420, 36]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 511 = 83−1, defining interval I = [0,34], and designed minimum distance d ≥ |I|+1 = 36 [i]
- linear OA(8112, 511, F8, 43) (dual of [511, 399, 44]-code), using the primitive BCH-code C(I) with length 511 = 83−1, defining interval I = {−8,−7,…,34}, and designed minimum distance d ≥ |I|+1 = 44 [i]
- linear OA(876, 511, F8, 29) (dual of [511, 435, 30]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 511 = 83−1, defining interval I = [0,28], and designed minimum distance d ≥ |I|+1 = 30 [i]
- linear OA(812, 29, F8, 7) (dual of [29, 17, 8]-code), using
- (u, u−v, u+v+w)-construction [i] based on
- linear OA(82, 9, F8, 2) (dual of [9, 7, 3]-code or 9-arc in PG(1,8)), using
- extended Reed–Solomon code RSe(7,8) [i]
- Hamming code H(2,8) [i]
- linear OA(83, 10, F8, 3) (dual of [10, 7, 4]-code or 10-arc in PG(2,8) or 10-cap in PG(2,8)), using
- linear OA(87, 10, F8, 7) (dual of [10, 3, 8]-code or 10-arc in PG(6,8)), using
- Denniston code D(1,8) [i]
- linear OA(82, 9, F8, 2) (dual of [9, 7, 3]-code or 9-arc in PG(1,8)), using
- (u, u−v, u+v+w)-construction [i] based on
- linear OA(87, 22, F8, 5) (dual of [22, 15, 6]-code), using
- discarding factors / shortening the dual code based on linear OA(87, 57, F8, 5) (dual of [57, 50, 6]-code), using
Mode: Constructive and linear.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
None.