Information on Result #716235
Linear OA(8113, 526, F8, 42) (dual of [526, 413, 43]-code), using construction XX applied to C1 = C([33,72]), C2 = C([37,74]), C3 = C1 + C2 = C([37,72]), and C∩ = C1 ∩ C2 = C([33,74]) based on
- linear OA(8105, 511, F8, 40) (dual of [511, 406, 41]-code), using the primitive BCH-code C(I) with length 511 = 83−1, defining interval I = {33,34,…,72}, and designed minimum distance d ≥ |I|+1 = 41 [i]
- linear OA(8100, 511, F8, 38) (dual of [511, 411, 39]-code), using the primitive BCH-code C(I) with length 511 = 83−1, defining interval I = {37,38,…,74}, and designed minimum distance d ≥ |I|+1 = 39 [i]
- linear OA(8109, 511, F8, 42) (dual of [511, 402, 43]-code), using the primitive BCH-code C(I) with length 511 = 83−1, defining interval I = {33,34,…,74}, and designed minimum distance d ≥ |I|+1 = 43 [i]
- linear OA(896, 511, F8, 36) (dual of [511, 415, 37]-code), using the primitive BCH-code C(I) with length 511 = 83−1, defining interval I = {37,38,…,72}, and designed minimum distance d ≥ |I|+1 = 37 [i]
- linear OA(83, 10, F8, 3) (dual of [10, 7, 4]-code or 10-arc in PG(2,8) or 10-cap in PG(2,8)), using
- linear OA(81, 5, F8, 1) (dual of [5, 4, 2]-code), using
- discarding factors / shortening the dual code based on linear OA(81, 8, F8, 1) (dual of [8, 7, 2]-code), using
- Reed–Solomon code RS(7,8) [i]
- discarding factors / shortening the dual code based on linear OA(81, 8, F8, 1) (dual of [8, 7, 2]-code), using
Mode: Constructive and linear.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | Linear OOA(8113, 263, F8, 2, 42) (dual of [(263, 2), 413, 43]-NRT-code) | [i] | OOA Folding |